Data Fusion Techniques and Application

Guangyu Zhou

Reference paper: Zheng Yu: Methodologies for Cross-Domain Data Fusion: An Overview
Agenda

- Introduction
- Related work
- Data fusion techniques & applications
 - Stage-based methods
 - Feature level-based methods
 - Semantic meaning-based data fusion methods
- Summary
What is data fusion?

- **Data fusion** is the process of integrating multiple data sources to produce more consistent, accurate, and useful information than that provided by any individual data source —— Wikipedia
Why data fusion?

- In the big data era, we face a diversity of datasets from different sources in **different domains**, consisting of **multiple modalities**:
 - Representation, distribution, scale, and density.
- How to unlock the power of knowledge from multiple disparate (but potentially connected) datasets?
 - Treating different datasets equally or simply concatenating the features from disparate datasets?
In the big data era, we face a diversity of datasets from different sources in **different domains**, consisting of **multiple modalities**:
- Representation, distribution, scale, and density.

How to unlock the power of knowledge from multiple disparate (but potentially connected) datasets?
- Treating different datasets equally or simply concatenating the features from disparate datasets
- Use advanced data fusion techniques that can fuse **knowledge** from various datasets organically in a machine learning and data mining task
Related Work

- Relation to Traditional Data Integration
Related Work

- Relation to Heterogeneous Information Network
 - It only links the object in a single domain:
 - Bibliographic network, author, papers, and conferences.
 - Flickr information network: users, images, tags, and comments.
 - Aim to fuse data across different domains:
 - Traffic data, social media and air quality
 - Heterogeneous network may not be able to find explicit links with semantic meanings between objects of different domains.
Data fusion methodologies

- Stage-based methods
- Feature level-based methods
- Semantic meaning-based data fusion methods
 - multi-view learning-based
 - similarity-based
 - probabilistic dependency-based
 - and transfer learning-based methods.
Stage-based data fusion methods

- Different datasets at different stages of a data mining task.
- Datasets are loosely coupled, without any requirements on the consistency of their modalities.
- Can be a meta-approach used together with other data fusion methods
Map partition and graph building for taxi trajectory

A) Map segmentation

B) Region graph
Friend recommendation

- **Stages**
 - I. Detect stay points
 - II. Map to POI vector
 - III. Hierarchical clustering
 - IV. Partial tree
 - V. Hierarchical graph
 - -> comparable (from same tree)
Data fusion methodologies

- Stage-based methods
- **Feature level-based methods**
- Semantic meaning-based data fusion methods
 - multi-view learning-based
 - similarity-based
 - probabilistic dependency-based
 - and transfer learning-based methods.
Feature-level-based data fusion

- **Direct Concatenation**
 - Treat features extracted from different datasets equally, concatenating them sequentially into a feature vector

- **Limitations:**
 - **Over-fitting** in the case of a small size training sample, and the specific statistical property of each view is ignored.
 - Difficult to discover highly non-linear relationships that exist between low-level features across different modalities.
 - **Redundancies and dependencies** between features extracted from different datasets which may be correlated.
Feature-level-based data fusion

- Direct Concatenation + sparsity regularization:
 - handle the feature redundancy problem
 \[
 P(\Psi|\Omega) = P(\omega|0, \beta^2) \prod_{m} N(\omega_m|0, \beta_m^2) \prod_{m} \text{Inverse-Gamma}(\beta_m^2|a, b);
 \]

- Dual regularization (i.e., zero-mean Gaussian plus inverse-gamma):
 - Regularize most feature weights to be zero or close to zero via a Bayesian sparse prior
 - Allow for the possibility of a model learning large weights for significant features
Feature-level-based data fusion

- DNN-Based Data Fusion
 - Using supervised, unsupervised and semi-supervised approaches, Deep Learning learns multiple levels of representation and abstraction
 - Unified feature representation from disparate dataset
DNN-Based Data Fusion

- Deep Autoencoder Models of feature representation between 2 modalities (audio + video)
The multimodal DBM is a generative and undirected graphic model.

- Enables bi-directional search.

To learn $P(v_{img}, v_{text}; \theta)$
Limitations of DNN-based fusion model

- Performance heavily depend on parameters

- Finding optimal parameters is a labor intensive and time-consuming process given a large number of parameters and a non-convex optimization setting.

- Hard to explain what the middle-level feature representation stands for.
 - We do not really understand the way a DNN makes raw features a better representation either.
Semantic meaning-based data fusion

- Unlike feature-based fusion, semantic meaning-based methods understand the **insight** of each dataset and **relations** between features across different datasets.

- 4 groups of semantic meaning methods:
 - multi-view-based, similarity-based, probabilistic dependency-based, and transfer-learning-based methods.
Data fusion methodologies

- Stage-based methods
- Feature level-based methods
- **Semantic meaning-based data fusion methods**
 - multi-view learning-based
 - co-training, multiple kernel learning (MKL), subspace learning
 - similarity-based
 - probabilistic dependency-based
 - and transfer learning-based methods.
Multi-View Based Data Fusion

- Different datasets or different feature subsets about an object can be regarded as different views on the object.
 - Person: face, fingerprint, or signature
 - Image: color or texture features

- Latent consensus & complementary knowledge

- 3 subcategories:
 - 1) co-training
 - 2) multiple kernel learning (MKL)
 - 3) subspace learning
Co-training considers a setting in which each example can be partitioned into two distinct views, making three main assumptions:

- **Sufficiency**: each view is sufficient for classification on its own
- **Compatibility**: the target functions in both views predict the same labels for co-occurring features with high probability
- **Conditional independence**: the views are conditionally independent given the class label. (Too strong in practice)
Multi-View Based Data Fusion: Co-training

- **Original Co-training**

 Given:

 - a set L of labeled training examples
 - a set U of unlabeled examples

 Create a pool U' of examples by choosing u examples at random from U

 Loop for k iterations:

 Use L to train a classifier h_1 that considers only the x_1 portion of x
 Use L to train a classifier h_2 that considers only the x_2 portion of x
 Allow h_1 to label p positive and n negative examples from U'
 Allow h_2 to label p positive and n negative examples from U'
 Add these self-labeled examples to L
 Randomly choose $2p + 2n$ examples from U to replenish U'
Co-training-based air quality inference model

A) Philosophy of the inference model
- A location with AQI labels
- A location to be inferred

B) Procedure of co-training
- Co-Training
 - Temporal Classifier
 - Spatial Classifier
- Temporal Features
- Spatial Features
- Labeled Data
- Unlabeled Data

Temporal dependency
Spatial correlation

Traffic Human Mobility Road Networks
Meteorology Time of Day POIs AQI Labels
Multi-View Based Data Fusion: MKL

2. Multi-Kernel Learning

- A kernel is a **hypothesis** on the data
- MKL refers to a set of machine learning methods that uses a predefined set of kernels and learns an optimal linear or non-linear combination of kernels as part of the algorithm.
 - Eg: Ensemble and boosting methods, such as Random Forest, are inspired by MKL.
MKL-based framework for forecasting air quality.
Multi-View Based Data Fusion: MKL

- The MKL-based framework outperforms a single kernel-based model in the air quality forecast example
 - Feature space:
 - The features used by the spatial and temporal predictors do not have any overlaps, providing different views on a station’s air quality.
 - Model:
 - The spatial and temporal predictors model the local factors and global factors respectively, which have significantly different properties.
 - Parameter learning:
 - Decomposing a big model into 3 coupled small ones scales down the parameter spaces tremendously.
Multi-View Based Data Fusion: subspace learning

- Obtain a latent subspace shared by multiple views by assuming that input views are generated from this latent subspace,
- Subsequent tasks, such as classification and clustering
- Lower dimensionality
Multi-View Based Data Fusion: subspace learning

- Eg: PCA ->
 - Linear case: Canonical correlation analysis (CCA)
 - maximizing the correlation between 2 views in the subspace
 \[
 x \rightarrow \langle w_x, x \rangle \quad \rho = \max_{w_x,w_y} \text{corr}(S_x w_x, S_y w_y) \\
 = \max_{w_x,w_y} \frac{\langle S_x w_x, S_y w_y \rangle}{\|S_x w_x\| \|S_y w_y\|}.
 \]
 - Non-linear: Kernel variant of CCA (KCCA)
 - map each (non-linear) data point to a higher space in which linear CCA operates.
Multi-View Based Data Fusion

- Summary of Multi-View Based methods
 1) co-training: maximize the mutual agreement on two distinct views of the data.
 2) multiple kernel learning (MKL): exploit kernels that naturally correspond to different views and combine kernels either linearly or non-linearly to improve learning.
 3) subspace learning: obtain a latent subspace shared by multiple views, assuming that the input views are generated from this latent subspace.
Data fusion methodologies

- Stage-based methods
- Feature level-based methods
- **Semantic meaning-based data fusion methods**
 - multi-view learning-based
 - similarity-based
 - Coupled Matrix Factorization
 - Manifold Alignment
 - probabilistic dependency-based
 - and transfer learning-based methods.
Recall: Matrix decomposition by SVD

\[
\begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} \\
 x_{21} & x_{22} & \cdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{m1} & x_{m2} & \cdots & x_{mn}
\end{pmatrix} =
\begin{pmatrix}
 u_{11} & \cdots & u_{1r} \\
 \vdots & \ddots & \vdots \\
 u_{m1} & \cdots & u_{mr}
\end{pmatrix}
\begin{pmatrix}
 s_{11} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & s_{rr}
\end{pmatrix}
\begin{pmatrix}
 v_{11} & \cdots & v_{1n} \\
 \vdots & \ddots & \vdots \\
 v_{r1} & \cdots & v_{rn}
\end{pmatrix}
\]

Problems of single matrix decomposition on different datasets:
- Inaccurate complementation of missing values in the matrix.
Similarity-Based: Coupled Matrix Factorization

- Solution by coupled (context-aware) matrix factorization:
 - To accommodate different datasets with different matrices (distribution, meaning), which share a common dimension between one another.
 - By decomposing these matrices collaboratively, we can transfer the similarity between different objects learned from a dataset to another one, therefore complementing the missing values more accurately.
Estimate the travel speed on each road segment in an entire city, based on the GPS trajectory of a sample of vehicles.
Coupled Matrix Factorization Application

- Coupled matrix factorization

\[
\begin{bmatrix}
 g_1 & g_2 & \ldots & g_{16} \\
 g_1 & g_2 & \ldots & g_{16}
\end{bmatrix}
\begin{bmatrix}
 r_1 & r_2 & \ldots & r_n \\
 r_1 & r_2 & \ldots & r_n
\end{bmatrix}
\begin{bmatrix}
 f_1 & f_2 & \ldots & f_k
\end{bmatrix}
\]

- Objective function:

\[
L(T, R, G, F) = \frac{1}{2} \left(\| Y - T(G; G)^T \|_2^2 + \frac{\lambda_1}{2} \| X - T(R; R)^T \|_2^2 \right) + \frac{\lambda_2}{2} \| Z - RF^T \|_2^2 + \frac{\lambda_3}{2} (\| T \|_2^2 + \| R \|_2^2 + \| G \|_2^2 + \| F \|_2^2),
\]

Algorithm TSE

Input: Incomplete matrix \(X \), context matrices \(Y \) and \(Z \)

Output: Complete matrix \(X \).

1. \(t = 1 \);
2. While \((t < N \text{ and } L_t - L_{t+1} > \epsilon)\) // \(N \) is \#(max iterations)
3. Get the gradients \(\nabla_{T_t}, \nabla_{R_t}, \nabla_{G_t}, \text{ and } \nabla_{F_t} \) by Eq.(6);
4. \(\gamma = 1 \);
5. While
6. \(L(T_t - \gamma \nabla_{T_t}, R_t - \gamma \nabla_{R_t}, G_t - \gamma \nabla_{G_t}, F_t - \gamma \nabla_{F_t}) \geq L(T_t, R_t, G_t, F_t) \)
7. \(\gamma = \gamma / 2; \) // search for the maximal step size
8. \(T_{t+1} = T_t - \gamma \nabla_{T_t}, R_{t+1} = R_t - \gamma \nabla_{R_t}, G_{t+1} = G_t - \gamma \nabla_{G_t}, F_{t+1} = F_t - \gamma \nabla_{F_t}; \)
9. \(t = t + 1; \)
10. Return \(X \);
Similarity-Based: Manifold Alignment

- Utilizes the **relationships** of instances **within** each dataset to strengthen the knowledge of the **relationships between** the datasets, thereby ultimately **mapping** initially disparate datasets to a joint latent space.

- Maps two datasets \((X, Y)\) to a new joint latent space \((f(X);g(Y))\),
Similarity-Based: Manifold Alignment

- Preserves 2 similarities:
 - The local similarity within a dataset,
 \[C_\lambda(F^a) = \sum_{i,j} \| F^a(i,.) - F^a(j,.) \|^2 \cdot W^a(i,j), \]
 - The correspondences across different datasets.
 \[C_k(F^a, F^b) = \sum_{i,j} \| F^a(i,.) - F^b(j,.) \|^2 \cdot W^{a,b}(i,j), \]

- C, cost function; F, embedding of data; W, similarity matrix; a, the a\(^{th}\) dataset
Similarity-Based: Manifold Alignment

- Manifold alignment assumes the disparate datasets to be aligned have the same underlying manifold structure.
- The second loss function is simply the loss function for Laplacian Eigen-maps using the joint adjacency matrix: \(L = D - W \)

\[
C_2(F) = \sum_{i,j} \sum_k \| F(i,k) - F(j,k) \|^2 \cdot W^{a,b}(i,j)
\]

\[
= \sum_{k} \sum_{i,j} \| F(i,k) - F(j,k) \|^2 \cdot W^{a,b}(i,j)
\]

\[
= \sum_k \text{tr}(F(.,k)'LF(.,k)) = \text{tr}(F'LF),
\]
Example: Infer the fine-grained noise situation by using complaint data together with social media, road network data, and POIs.
Data fusion methodologies

- Stage-based methods
- Feature level-based methods
- **Semantic meaning-based data fusion methods**
 - multi-view learning-based
 - similarity-based
 - probabilistic dependency-based
 - and transfer learning-based methods.
Probabilistic Dependency-Based Fusion

- This category of approaches bridges the gap between different datasets by the probabilistic dependency, which emphasize more about the interaction rather than the similarity between two objects.

- Two branches of graphical representations of distributions are commonly used:
 - Bayesian Networks
 - Markov Networks (a.k.a. Markov Random Field)
Probabilistic Dependency-Based Fusion Model

- The graphical structure of traffic volume inference model based on POIs, road networks, travel speed and weather.
 - A gray node denotes a hidden variable and white nodes are observations.
 - θ: road hidden variable
 - α: POI hidden variable
 - N_a: Traffic volume hidden variable
Data fusion methodologies

- Stage-based methods
- Feature level-based methods
- **Semantic meaning-based data fusion methods**
 - multi-view learning-based
 - similarity-based
 - probabilistic dependency-based
 - transfer learning-based methods.
Transfer learning-based methods

- An assumption in many machine learning algorithms is that the training and test data must be in the **same feature space** and have the **same distribution**.

- Transfer learning, in contrast, allows the domains, tasks, and distributions used in training and testing to be different.

- Examples:
 - A user’s transaction records in Amazon -> application of travel recommendation.
 - The knowledge learned from one city’s traffic data -> another city.
Taxonomy of Transfer learning

<table>
<thead>
<tr>
<th>Learning settings</th>
<th>Source and target domains</th>
<th>Source and target tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional ML</td>
<td>the same</td>
<td>the same</td>
</tr>
<tr>
<td>Inductive learning / unsupervised TL</td>
<td>the same</td>
<td>different but related</td>
</tr>
<tr>
<td>Transductive learning</td>
<td>different but related</td>
<td>different but related</td>
</tr>
</tbody>
</table>

Diagram:
- Transfer Learning
 - Same Task
 - Y: Transductive Transfer Learning
 - N: Unsupervised Transfer Learning
 - N: Label data in target domain
 - Y: Inductive Transfer Learning
 - N: Multi-task Learning
 - Y: Label in source domain
 - N: Self-taught Learning
Transfer between the Same Type of Datasets

- Examples of multi-task transfer learning

A) Book-travel interests co-estimation

- Physical location history
- Books browsed online

- Joint Task Learner
- Travel Packages {A, B, C}
- Book categories {war, romantic, sci-fi}

B) Air quality-traffic co-prediction

- Air quality data
- Traffic Data

- Joint Task Learner
- {Good, moderation, Unhealthy}
- {fast, normal, congestion}
Transfer Learning among Multiple Datasets

A) Complete Datasets and instances

B) Some datasets missing

C) Datasets complete but instance sparse

D) Datasets and instances missing
Comparison of Different Data Fusion Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Meta</th>
<th>Labels</th>
<th>Goals</th>
<th>Train</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vol</td>
<td>Pos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage-based</td>
<td>Y</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>N</td>
<td>L</td>
<td>Flex</td>
<td>F,P,C,O</td>
<td>S</td>
</tr>
<tr>
<td>Direct</td>
<td>N</td>
<td>L</td>
<td>Flex</td>
<td>F,P,A,O</td>
<td>U/S</td>
</tr>
<tr>
<td>DNN</td>
<td>N</td>
<td>L</td>
<td>Flex</td>
<td>F,P,A,O</td>
<td>U/S</td>
</tr>
<tr>
<td>Semantic</td>
<td>Y</td>
<td>S</td>
<td>Fix</td>
<td>F,P,O</td>
<td>S, SS</td>
</tr>
<tr>
<td>Multiview</td>
<td>Y</td>
<td>S</td>
<td>Fix</td>
<td>F,P,C,O,A</td>
<td>S/U</td>
</tr>
<tr>
<td>Similarity</td>
<td>N</td>
<td>S</td>
<td>Flex</td>
<td>F,A,O</td>
<td>U</td>
</tr>
<tr>
<td>Transfer</td>
<td>Y</td>
<td>S</td>
<td>Fix</td>
<td>F,P,A</td>
<td>S/U</td>
</tr>
</tbody>
</table>

Filling Missing Values (of a sparse dataset), Predict Future, Causality Inference, Object Profiling, and Anomaly Detection.
Thank you!

Q & A